Projet régional SBaDFoRM

« State-Based Decision for Road Maintenance »

Tristan Lorino

Journées techniques Routes 2013 Nantes - 6 & 7 février 2013

Présentation

- Financement par la région Pays de la Loire
- Partenariat Ifsttar IRCCyN (Institut de recherche en communications et cybernétique de Nantes)
 - EMN (École des mines de Nantes)
 - UN (Université de Nantes)
- Durée : quatre ans

Projet ○● Outil web

Objectifs

- Développement d'une approche décisionnelle pour l'optimisation de la maintenance conditionnelle (fonction de l'état antérieur de la chaussée)
- Intégration des aspects technico-économiques
- Distinction entre dégradation observable (relevé de surface) et dégradation inobservable (couches inférieures)
- Application à un cas concret : la fissuration longitudinale
- Outil web pour le paramétrage et la mise en œuvre du modèle de maintenance conditionnelle

Conclusions

Indicateurs

- Indicateur de dégradation visible : $\rho(t)$
- Indicateur du potentiel de dégradation sous-jacent : $\theta(t)$
- Étude de l'indicateur bivarié de dégradation ($\rho(t)$, $\theta(t)$)
- Modélisation conjointe des deux phénomènes corrélés
- Processus stochastiques complexes

Conclusions

Phase d'initiation de la fissure

■ T₍₁₎ : temps d'apparition de la première fissure (en surface)

Conclusions

Phase de propagation de la fissure

■ $\Delta \theta(t) < 0$: potentiel de fissuration non totalement libéré

Tristan Lorino – JTR 2013

Conclusions

Types de maintenance

Prise en compte des différentes actions de maintenance

- M₀ : ne rien faire ;
- M1, M2, M3 : épaisseurs additionnelles croissantes
- M₄ : remise à neuf (décaissement)
- Coûts associés
- Impacts futurs sur l'évolution de la fissuration

Conclusions

Absence d'action de maintenance

■ Au temps τ : inspection et décision d'action de type M₀

Conclusions

Action de maintenance

Au temps τ : inspection et décision d'action de type M₁, M₂, M₃ ou M₄

Conclusions

Optimisation

- Algorithme itératif pour l'optimisation de la politique de maintenance
- Résultat final sous forme de matrice de décisions de type markovien

ρ

Outil web

IDRRIM

Conclusions

Résultat

		III – J									
	,									、	
0,9	0	2	2	2	3	3	3	3	4	4	
0,8	0	2	2	2	3	3	3	3	3	4	
0,7	0	2	2	2	3	3	3	3	3	4	
0,6	0	2	2	2	2	3	3	3	3	4	
0,5	0	1	2	2	2	3	3	3	3	3	
0,4	0	1	2	2	2	3	3	3	3	3	
0,3	0	1	2	2	2	2	3	3	3	3	
0,2	0	1	1	2	2	2	3	3	3	3	
0,1	0	1	1	2	2	2	3	3	3	3	
0,0	0	0	0	0	0	0	2	3	3	3	
	, 0 0	0.1	0.2	03	04	0.5	0.6	07	0.8	09	
	0,0	0,1	0,2	0,5	0,4	0,5	0,0	0,7	0,0	0,5	
				$\hat{ heta}$							

m - 3

Béseau Scientifique et Technique de l'Equipement

Conclusions

Outil web (1)

Multi-paramétrage :

- pas et coûts des inspections
- types et coûts des différents types de maintenance
- hauteur maximal de la chaussée
- lois de propagation
- ...
- Deux modes : novice / expert

Conclusions

Outil web (2)

🗅 Road Maintenance Manag 🗴								
← → C D ios.ifsttar.fr/road_maintenance_manager								
Home MPP1								
Novice Mode Expert Mode								
Observable degradation percentage:	0.02							
Deterioration growth rate:	0.26							
The pavement thickness:	22 💌							
The previous level of maintenance:	2 💌							
The step:	0.2 💌							
The rehabilitation cost:	150000							
The inspection cost:	100							
The thickness to be added for each maintenance action:	0 7 14 22 🛟 🤤							
The cost of each maintenance action in €:	0 200 500 1500							
The total cost of each maintenance action:	100.0 300.0 600.0 15011							
	Submit							

Conclusions (1)

- Mise au point d'un modèle original, complexe et opérationnel
 - processus global de fissuration (observable et inobservable)
 - optimisation suivant les politiques de maintenance envisagées
- Mise au point d'un réseau routier virtuel
 - évaluation des modèles physiques de propagation des dégradations
 - évaluation des actions de maintenance

Conclusions

Conclusions (2)

Développement d'un outil web

- interaction langage R Web Google Toolkit
- multi-paramétrage
- modules novice/expert
- illustration des courbes d'évolution de la fissuration
- futur accès sur un serveur de l'Ifsttar

Conclusions

Merci pour votre attention

Ifsttar Centre de Nantes Route de Bouaye CS4 44344 Bouguenais Cedex

Mél. tristan.lorino@ifsttar.fr Tél. +33 (0)2 40 84 56 18 Fax. +33 (0)2 40 43 59 92

Site : www.ifsttar.fr

Tristan Lorino – JTR 2013