French Institute of Science and Technology for Transport, Development and Networks

LCE4ROADS: a new certification system for sustainable roads

Véronique Cerezo, IFSTTAR

www.lce4roads.eu

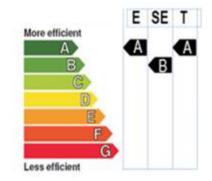
Introduction

- Several <u>existing assessment system</u>
- Certification (Green Public Procurement): criteria for design, construction and maintenance phases

BUT

- Not covering all phases (use, end of life)
- Not covering all pillars of sustainability
 - Barriers to implementation:
 - No standards/ regulations (CEN TC350)
 - Regional peculiarities
 - Road authorities do not like to compare roads
 - Costs

Consortium « LCE4ROADS »

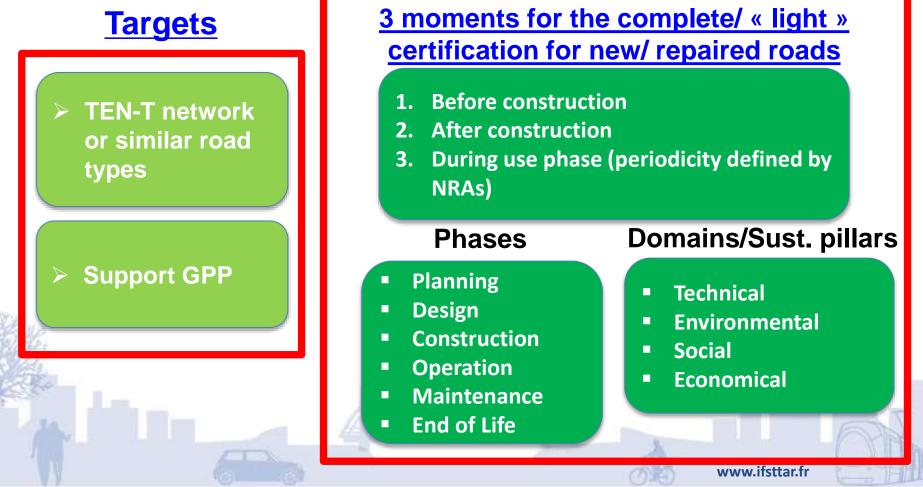

Acciona (coordinator) BASt CIRCE **Chalmers** ERF **FEHRL IECA IFSTTAR** (+ CEREMA Lyon, ECN) TNO KGM **AENOR INVESTEKO** NAPE SA

Objectives of LCE4ROADS

Development of a European certification for road infrastructures

Definition of a methodology and key performances indicators based on Life Cycle Assessment approach and existing standards (ISO, EN)

E: Environmental SE: Socio –Economic T: Technical


Development of a certification tool and validation on case studies from various European countries

Proposal of guidelines and contribution to European standardization

Framework

• Roads (bridges/tunnels) and consideration of regional peculiarities

Indicators (1/2)

- Accepted at international level
- Green public procurement
- ISO Standards for LCA (14040-44) and LCC (15686)
 - <u>LCA</u>: GWP (kg eq. CO2); POCP (kg eq. C2H4); AP (kg eq. SO2); EI (kg eq.(PO43-); EP and TP (kg eq. 1.4-eq DCB)
 - <u>LCC</u>: natural resources costs; construction costs; user costs; maintenance costs; winter maintenance costs; landfilling; etc.
- Aligned with CEN/TC 350 Sustainability in construction works and TC 227 Road materials
 - EN 15804 for construction products (EPD)
 - CEN/TC 350/WG6 for civil engineering works
- **Others indicators**
 - Comfort, Safety audit (Directive 2008/96EC), mechanical/structural

Indicators (2/2)

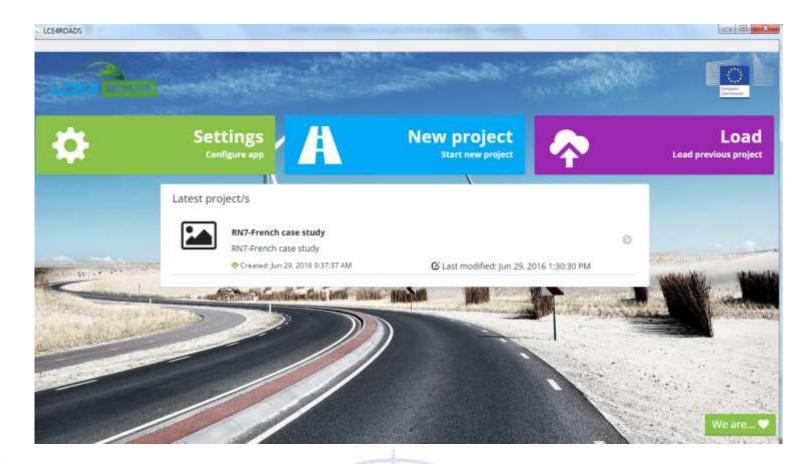
Environmental

- Resources (raw materials, recycling, energy mix, etc.)
- GWP
- ODP, acidification, eutrophication, toxicity and ecotoxicity, etc.
- Technical
 - Evenness, Rutting
 - Modulus (Falling Weighting Deflectometer), Skid resistance, macrotexture
- Social
 - Safety audits (O/N)
 - Comfort
 - Noise level decrease due to a pavement surface type
 - Economical: costs (construction, maintenance, users)

Certificate

- Draft of the certificate
- ≈ 30 indicators
 (mandatory or not)
- Introduction of thresholds values when they exist

LCE4ROADS CERTIFICATE (COMPLETE)


OPERATIONAL PHASE CERTIFICATE NUMBER: 1

Date: 28.07.201

	ROAD IDENTIFICATION												
Road	Road Name : Gerede-Kızılcahamam Yolu			pu	e	Annual average daily traffic	4428						
				jc a	Climate	Percentage of heavy vehicle	59						
	Road Class	State Road		Traffic and	Clir	Annual average frost days	119						
				Ē		Annual average rainy days	104						
	KKNo	750-06		5		SMA	4						
	Kilometre	84+860-86+360		Laye	cm,	Binder	12						
	Number of traffic lane	2x2		ent I	Thickness,	CIPR Bituminous base	25						
	Pavement width in one direction	11,3 m		Pavement Layer		Granular Base	20						
	Year of opening to traffic	2011		Pa		Subbase	20						
SUSTAINIBILTY DOMAINS													
					SOCIAL								

ENVIRONMENTAL				SOCIAL					
-	Virgin aggregate consumption	20736			Skid resistance	SN ₂			
eria	Material suspected to be recycled	50	1		Traffic accident rate	-			
Material	Low temperature asphalt, %	13951			Safety audits &safety inspections (Directive 2008/96EC)	No			
2	Energy demand	2,06E+00							
	Global warming (climate change)	1,32E+06		ety					
	Photochemical Ozone Creation (POCP)	3,96E+02		Safety	Noise (habitant affection)	-			
	Acidification Potential (AP)	9,73E+03			Noise (wild life affection)	-			
Impact	Eutrophication Potential (EP)	1,65E+03			Tire-road contact noise, dBA	96			
du	Abiotic Depletion Potential (ADP)	1,79E+04			IRI, m/km	1,05			
	Abiotic Depletion – fossil fuel	9,73E+03			Ruth depth, mm	4			
	Toxicity (T)	-		Traffic	c congestion mitigation plan	No			
	Ecotoxicity (ET)	-		Dust n	nitigation plan	No			
TECHNICAL				ECONOMICAL					
Analysis period / Life span, years		36		Discou	unt Rate, %	10			
Number of rehabilitation		2	1	its,	Initial Cost	68,6			
Maintenance and rehabilitation plan(M&R)		Yes		Costs,	Maintenance cost	22,1			
Pavement effective modulus, MPa		1005	1	£ u	Rehabilitation cost	65,1			
Subgrade modulus, MPa Maximum allowable IRI, m/km Minimum allowable skid resistance		100		Unifor x1000	m² cost	0,04			
		3,5		Annual Uniform (x100o €)	Salvage value	60,9			
		0,3	1	enu	User cost and Work zone cost	13076,9			
Max	kimum allowable rut depth, mm	30		Anr	User cost (due to increase in IRI)	358,4			

Certification tool

- Developed by CIRCE
- Database adapted to European countries (energy mix, etc.)
 www.ifsttar.fr

Validation

- Checking of the data consistency (inventories): unitary values (materials) with Ecorce 2, Ecoinvent, NAPE database (Pologne)
- Validation on « simple » case studies
 - 1 km of road
 - 1 t of material, etc.
- Validation on real case studies (1 concrete pavement, 4 asphalt pavements)
 - 2 Turkish projects KGM
 - 1 Polish projects INVESTEKO / NAPE
 - 1 Spanish project IECA
 - 1 French project IFSTTAR

Comparison with Ecorce 2 and Sima-Pro tools

6 months of tests 4 versions of the tool

www.ifsttar.fr

European standardization

• AENOR

 Liaison with TC350 « sustainability in construction » and TC227 « road materials »

• CWA (CEN Workshop Agreement):

- Definition of a set of indicators to assess sustainability of road infrastructure and materials
- Panel of international experts to analyse working drafts

Twinning with USA

- Scanning tours in USA (FHWA, VTTI), Europe (ACCIONA, BASt, etc.)
 - Exchanges on certification systems (Greenroads)
 - Comparison of existing systems and tools to assess environmental impacts
 - Collaboration on rolling resistance modelling

→ Presentation at « TRB2017 » (Washington, USA)

Santos J., Thyagarajan S., Keijzer E., Fernando Florez R., Flintsch G. (2017), *Comparison of life cycle assessment tools for road pavement infrastructures*, Transportation Research Record: Journal of the Transportation Research Board, Vol. 2646, p. 28-38.

Presentation at « Pavement Life-Cycle Assessment Symposium 2017 » (Champaign, USA)

Santos J., Thyagarajan S., Keijzer E., Fernando Florez R., Flintsch G. (2017), *Pavement life cycle assessment - a comparison of American and European tools*, In : Pavement Life-Cycle Assessment Symposium 2017, Champaign, Illinois, USA.

www.ifsttar.fr

Conclusion

- FP7 EU Project (2013 2016)
- Final seminar in Brussels: 17/11/2016

www.lce4roads.eu

- 75% of the reports are public and available online
- Guideline to implement the methodology and validated tool with database adapted to European peculiarities
- Support innovation (new products, materials, etc.)

Valorisation of the tool and certification methodology: ongoing discussion between partners

French Institute of Science and Technology for Transport, Development and Networks

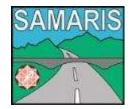
www.ifsttar.fr

Thank you for your attention

IFSTTAR

Allée des Ponts et Chaussées CS5004 44344 Bouguenais France

www.ease.ifsttar.fr veronique.Cerezo@ifsttar.fr



Existing European Evaluation Systems for Roads

route durable Démarche certifiée par Certivée

CO₂Emission REduction in roAd Lifecycles

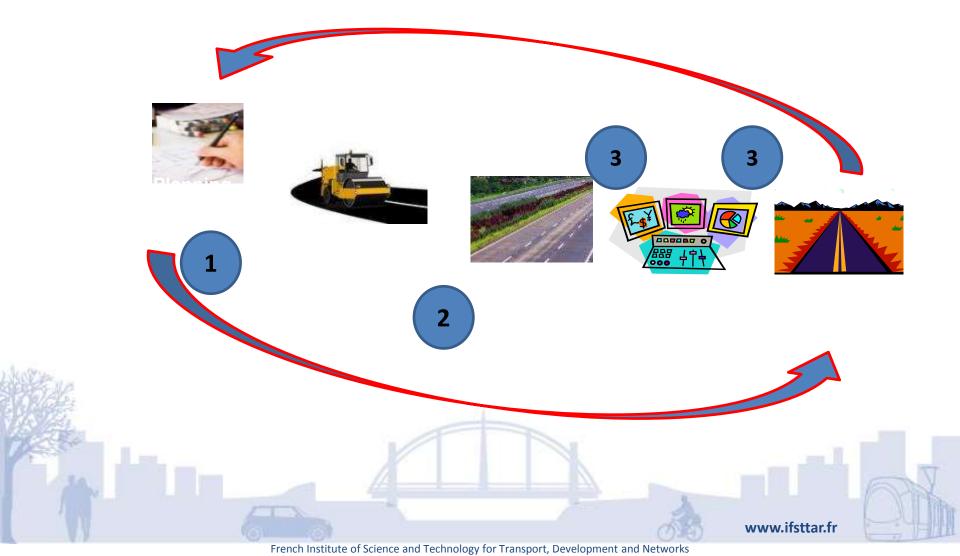
MIRIAM

354 Performance Indicators

French Institute of Science and Technology for Transport, Development and Networks

Re-Road

US Evaluation Systems for Roads


www.ifsttar.fr

Certification scope

- Dedicated to TEN-T road network or roads with similar characteristics (geometry, traffic, etc.)
- Road submitted to safety audits (Directive 2008/96EC)

Certification moments

